{7, 0, 0, 0, 0, 0, 0}

Table of Percent Abundance (row: Lie-type, col: Group Factor):

LC-14_435411_648.gif

27955 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿6} LC-14_435411_649.gif
10220 {1⇿2,2⇿3,4⇿5,6⇿7,1⇿3,1⇿4,1⇿6} LC-14_435411_650.gif
8624 {1⇿2,2⇿3,3⇿4,6⇿7,3⇿5,1⇿6} LC-14_435411_651.gif
1735 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿7} LC-14_435411_652.gif
39738 {1⇿2,2⇿3,4⇿5,6⇿7,1⇿4,1⇿6} LC-14_435411_653.gif
14884 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7} LC-14_435411_654.gif
2995 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿5,1⇿6} LC-14_435411_655.gif
424 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿5,2⇿6} LC-14_435411_656.gif
5315 {1⇿2,2⇿3,3⇿4,6⇿7,2⇿5,1⇿6} LC-14_435411_657.gif
8944 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿7} LC-14_435411_658.gif
1036 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,3⇿6} LC-14_435411_659.gif
2272 {1⇿2,2⇿3,3⇿4,6⇿7,2⇿5,1⇿5,1⇿6} LC-14_435411_660.gif
939 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿4,1⇿6} LC-14_435411_661.gif
47 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3,1⇿7} LC-14_435411_662.gif
17 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿6} LC-14_435411_663.gif
68 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿4,1⇿7} LC-14_435411_664.gif
211 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿5,3⇿7} LC-14_435411_665.gif
281 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,3⇿7} LC-14_435411_666.gif
233 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿5} LC-14_435411_667.gif
33 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3,1⇿6} LC-14_435411_668.gif
201 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,2⇿6} LC-14_435411_669.gif
364 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,4⇿7} LC-14_435411_670.gif
128 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿4,2⇿6} LC-14_435411_671.gif
50 {1⇿2,2⇿3,3⇿4,6⇿7,3⇿5,1⇿6,1⇿7} LC-14_435411_672.gif
62 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,2⇿5,1⇿6} LC-14_435411_673.gif
167 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,5⇿7} LC-14_435411_674.gif
9 {1⇿2,2⇿3,3⇿4,6⇿7,2⇿5,1⇿6,1⇿7} LC-14_435411_675.gif
328 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿4,2⇿7} LC-14_435411_676.gif
295 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿6} LC-14_435411_677.gif
208 {1⇿2,2⇿3,3⇿4,6⇿7,3⇿5,1⇿4,1⇿6} LC-14_435411_678.gif
79 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿3,2⇿5,2⇿6} LC-14_435411_679.gif
24 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,4⇿6,2⇿7} LC-14_435411_680.gif
103 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿3,2⇿6} LC-14_435411_681.gif
51 {1⇿2,2⇿3,4⇿5,6⇿7,1⇿3,1⇿4,1⇿5,1⇿6} LC-14_435411_682.gif
12 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,2⇿5,2⇿6} LC-14_435411_683.gif
28 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,2⇿4,1⇿6} LC-14_435411_684.gif
7 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿4,3⇿7,1⇿6} LC-14_435411_685.gif
180 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿6,1⇿7} LC-14_435411_686.gif
9 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿4,3⇿7} LC-14_435411_687.gif
11 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3} LC-14_435411_688.gif
51 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿4,2⇿5,2⇿6} LC-14_435411_689.gif
15 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3,2⇿7,1⇿7} LC-14_435411_690.gif
19 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿3,1⇿5,1⇿6} LC-14_435411_691.gif
15 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿4} LC-14_435411_692.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,5⇿7,2⇿6} LC-14_435411_693.gif
3 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿5,4⇿7} LC-14_435411_694.gif
2 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,4⇿7,2⇿6} LC-14_435411_695.gif
2 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿4,1⇿6,2⇿7} LC-14_435411_696.gif
6 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿3,1⇿6} LC-14_435411_697.gif
4 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿4,2⇿5,3⇿7} LC-14_435411_698.gif
2 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿5,3⇿6,4⇿7} LC-14_435411_699.gif
6 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿4,1⇿6} LC-14_435411_700.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3,1⇿4,2⇿7} LC-14_435411_701.gif
8 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3,2⇿7} LC-14_435411_702.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿5,3⇿6,4⇿7,1⇿7} LC-14_435411_703.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3,1⇿5} LC-14_435411_704.gif
3 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿5,1⇿6} LC-14_435411_705.gif
5 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿3,1⇿5,2⇿7} LC-14_435411_706.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿3,3⇿6} LC-14_435411_707.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿5,4⇿7,1⇿7} LC-14_435411_708.gif
5 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿5,1⇿6,1⇿7} LC-14_435411_709.gif
3 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,2⇿5,3⇿7} LC-14_435411_710.gif
1 {1⇿2,2⇿3,3⇿4,6⇿7,3⇿5,1⇿4,1⇿5,1⇿6} LC-14_435411_711.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,3⇿5,1⇿4,2⇿7} LC-14_435411_712.gif
2 {1⇿2,2⇿3,3⇿4,6⇿7,2⇿4,2⇿5,1⇿5,1⇿6} LC-14_435411_713.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,3⇿6,4⇿7} LC-14_435411_714.gif
Spikey Created with Wolfram Mathematica 9.0