{8, 0, 0, 0, 0, 0, 0}

Table of Percent Abundance (row: Lie-type, col: Group Factor):

LC-14_435411_1185.gif

20868 {1⇿2,2⇿3,4⇿5,6⇿7,1⇿4,1⇿6,1⇿8} LC-14_435411_1186.gif
1236 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿5,1⇿6,1⇿8} LC-14_435411_1187.gif
7655 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿6,1⇿8} LC-14_435411_1188.gif
4346 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿8} LC-14_435411_1189.gif
3635 {1⇿2,2⇿3,4⇿5,6⇿7,6⇿8,1⇿4,1⇿6} LC-14_435411_1190.gif
3593 {1⇿2,2⇿3,3⇿4,6⇿7,3⇿5,1⇿6,1⇿8} LC-14_435411_1191.gif
2322 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,6⇿8} LC-14_435411_1192.gif
4006 {1⇿2,2⇿3,3⇿4,6⇿7,2⇿5,1⇿6,1⇿8} LC-14_435411_1193.gif
390 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,5⇿8} LC-14_435411_1194.gif
975 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8} LC-14_435411_1195.gif
1175 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿8} LC-14_435411_1196.gif
321 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,2⇿8} LC-14_435411_1197.gif
853 {1⇿2,2⇿3,3⇿4,6⇿7,2⇿5,1⇿5,1⇿6,1⇿8} LC-14_435411_1198.gif
912 {1⇿2,2⇿3,4⇿5,6⇿7,1⇿3,1⇿4,1⇿6,1⇿8} LC-14_435411_1199.gif
214 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,4⇿8} LC-14_435411_1200.gif
18 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,4⇿8} LC-14_435411_1201.gif
68 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,3⇿8} LC-14_435411_1202.gif
64 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,6⇿8,2⇿7} LC-14_435411_1203.gif
29 {1⇿2,2⇿3,3⇿4,6⇿7,3⇿5,1⇿4,1⇿6,1⇿8} LC-14_435411_1204.gif
8 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿4,2⇿6,1⇿8} LC-14_435411_1205.gif
68 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿5,3⇿8} LC-14_435411_1206.gif
20 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,5⇿8,2⇿7} LC-14_435411_1207.gif
13 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿6,3⇿8} LC-14_435411_1208.gif
25 {1⇿2,2⇿3,4⇿5,6⇿7,1⇿3,6⇿8,1⇿4,1⇿6} LC-14_435411_1209.gif
13 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,6⇿8} LC-14_435411_1210.gif
14 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,1⇿7,1⇿8} LC-14_435411_1211.gif
41 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿6} LC-14_435411_1212.gif
16 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,5⇿8} LC-14_435411_1213.gif
30 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿4,1⇿6,1⇿8} LC-14_435411_1214.gif
5 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿5,1⇿8} LC-14_435411_1215.gif
5 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,4⇿7,2⇿8} LC-14_435411_1216.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,6⇿8,1⇿7} LC-14_435411_1217.gif
12 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,3⇿6,1⇿8} LC-14_435411_1218.gif
5 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,6⇿8,1⇿6} LC-14_435411_1219.gif
4 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,5⇿8,1⇿8} LC-14_435411_1220.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿3,2⇿8} LC-14_435411_1221.gif
19 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿4,2⇿8} LC-14_435411_1222.gif
15 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,2⇿6,1⇿8} LC-14_435411_1223.gif
2 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿5,2⇿6,1⇿8} LC-14_435411_1224.gif
5 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿5,4⇿8} LC-14_435411_1225.gif
6 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,3⇿8} LC-14_435411_1226.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,5⇿8,2⇿6} LC-14_435411_1227.gif
2 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,5⇿7,3⇿8} LC-14_435411_1228.gif
5 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,6⇿8,3⇿6} LC-14_435411_1229.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,5⇿7,2⇿8} LC-14_435411_1230.gif
3 {1⇿2,2⇿3,3⇿4,4⇿5,6⇿7,1⇿3,1⇿6,1⇿8} LC-14_435411_1231.gif
1 {1⇿2,2⇿3,4⇿5,6⇿7,1⇿3,1⇿4,1⇿5,1⇿6,1⇿8} LC-14_435411_1232.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿4,3⇿8} LC-14_435411_1233.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,3⇿6,4⇿7,2⇿8} LC-14_435411_1234.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿6,1⇿7} LC-14_435411_1235.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,2⇿6,3⇿8} LC-14_435411_1236.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,2⇿5,3⇿8} LC-14_435411_1237.gif
1 {1⇿2,2⇿3,3⇿4,4⇿5,5⇿6,6⇿7,7⇿8,1⇿3,1⇿6} LC-14_435411_1238.gif
Spikey Created with Wolfram Mathematica 9.0